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In shallow turbulent wake flows (typically an island wake), the flow patterns have been
found experimentally to depend mainly on a shallow wake parameter, S¯ c

f
D}h in

which c
f
is a quadratic-law friction coefficient, D is the island diameter and h is water

depth. In order to understand the dependence of flow patterns on S, the shallow-water
stability equation (a modified Orr–Sommerfeld equation) has been derived from the
depth-averaged equations of motion with terms which describe bottom friction.
Absolute and convective instabilities have been investigated on the basis of wake
velocity profiles with a velocity deficit parameter R. Numerical computations have
been carried out for a range of R-values and a stability diagram with two dividing lines
was obtained, one defining the boundary between absolute and convective instabilities
S
ca

, and another defining the transition between convectively unstable and stable wake
flow S

cc
. The experimental measurements (Chen & Jirka 1995) of return velocities in

shallow wakes were used to compute R-values and two critical values, S
A

¯ 0±79 and
S
C

¯ 0.85, were obtained at the intersections with lines S
ca

and S
cc
. Through

comparison with transition values observed experimentally for wakes with unsteady
bubble (recirculation zone) and vortex shedding, S

U
and S

V
respectively, the sequence

S
C

"S
A

"S
U

"S
V

shows vortex shedding to be the end product of absolute
instability. This is analogous to the sequence of critical Reynolds numbers for an
unbounded wake of large spanwise extent. Experimental frequency characteristics
compare well with theoretical results. The observed values of S

U
and S

V
for different

flow patterns correspond to the velocity profile with R¯®0.945, which is located at
the end of the wake bubble, and it provides the dominant mode.

1. Introduction

Previous work has revealed characteristic features of the so-called ‘shallow wake’ in
geophysical and environmental flows. One typical example is the island wake in which
both ‘vortex street ’ and ‘stable bubble wakes’ have been visualized through the aerial
photographs of Van Dyke (1982), Wolanski, Imberger & Heron (1984), Pattiaratchi,
James & Collins (1986), and Ingram & Chu (1987). The phenomena of both bubble and
vortex wakes have also been observed downwind of mountains in the atmosphere
(Scorer 1978; Smith & Grubisic 1993). Chen & Jirka (1995) studied this kind of flow
experimentally on a shallow water table. The ‘shallow wake’ was generated by vertical
cylindrical bodies extending over the water depth. The ambient flow is characterized by
two main features : one is the existence of a free surface and bottom by which the
shallow water layer is bounded and the other is a fully developed turbulent boundary
layer.Here the transverse bodydimensionD greatly exceeds thewater depth h(D}h( 1).
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(a)

(b)

(c)

(d)

F 1. Schematic flow patterns of a shallow near wake produced by a D¯ 62 cm cylinder
(adapted from figure 5 of Chen & Jirka 1995) : (a) vortex street pattern (S¯ 0.19, Re

h
¯ 5900,
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The wake Reynolds number Re
d
¯U

a
D}ν was very large, greater than 10%, while

the ambient flow Reynolds number that governs the shear flow in the transverse
dimension Re

h
¯U

a
h}ν was always larger than 1500. U

a
is the depth-average ambient

velocity and ν is the kinematic viscosity. Re
h

is thus well above the transition value of
about 500. Different types of body were investigated, including cylinders, flat plates
and porous plates oriented transversely to the ambient flow. The flow patterns fell into
three categories : vortex shedding, unsteady bubble and steady bubble as shown in
figure 1. A stability parameter S¯ c

f
D}h has been used to classify these three flow

patterns. The friction coefficient of the water table c
f
was estimated from the standard

smooth-wall relation.
An important challenge is to explain the evolution of these flow patterns. The

presence of background turbulence makes the shallow wake greatly different from
unbounded low-Reynolds-number wakes which have been studied previously (e.g.
Roshko 1961; Morkovin 1964; Gerrard 1978). For instance, in shallow water either
vortex shedding or a stable wake could be observed for wake Reynolds number values
from 10% (in the experiments) to 10( (in nature), while vortex shedding always occurs
in unbounded wakes when the Reynolds number is of the order of 100. In the shallow
wake, stabilization is due to bottom friction as well as the kinematical restriction in the
vertical direction.

To obtain a theoretical explanation for the shallow wake instability we consider here
the analysis of absolute and convective instabilities made in relation to von Ka! rma! n
vortex shedding from unbounded two-dimensional bodies. The concept of absolute
and convective instability was first defined in plasma physics by Briggs (1964) and Bers
(1975). Traditional instability analysis had previously dealt with the spatial mode (real
frequency) and the temporal mode (real wavenumber) separately. Absolute and
convective instabilities concern temporal–spatial problems (complex wavenumber and
frequency) and provide the theoretical insight needed to classify free shear flows. For
example, the mixing layer, the pure jet, and the far wake are convectively unstable
under normal conditions (e.g. uniform density, no external forcing) since only spatial
evolution of a disturbance is possible. However, a part of the near-wake flow is
absolutely unstable and a temporal growth of a disturbance results in vortex shedding,
which is the saturated end product of this temporal global instability.

Related work on absolute and convective instabilities in unbounded wake flows can
be traced back to Betchov & Criminale (1966). They discovered a branch-point
singularity of the inviscid dispersion relation in the upper complex-frequency plane
indicating absolute instability for a wake profile with zero centreline velocity. Reviews
on the topic of absolute instability can be found in Huerre & Monkewitz (1990) and
Oertel (1990). Among previous works, it is noted that Monkewitz (1988) studied the
effect of Reynolds number on local absolute instability and Chomaz, Huerre &
Redekopp (1988, 1991) have studied the global instabilities of wakes.

With regard to shallow wake flows, Schar & Smith (1993) studied the global normal
mode of instability for an inviscid flow pass an isolated topography. Grubisic, Smith
& Schar (1995) carried out a local absolute stability analysis for a piecewise-linear
velocity profile which unfortunately missed the two inflection points. The reverse
flow velocity was determined by the magnitude of bottom friction which also defined
the velocity profile. A surface drag number r was defined as the product of the drag
coefficient and the ratio of horizontal length scale and the height of fluid layer. (This

Re
d
¯ 183000) ; (b) unsteady bubble wake (S¯ 0.27, Re

h
¯ 3810, Re

d
¯ 149000) ; (c) unsteady bubble

wake with weaker downstream instabilities (S¯ 0.34, Re
h
¯ 2600, Re

d
¯ 115000) ; and (d ) steady

bubble wake (S¯ 0.53, Re
h
¯ 1800, Re

d
¯ 112000).
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definition is analogous to the wake stability parameter S given above but differs by a
factor of 2 due to the choice of the drag coefficient.) A critical value of r¯ 0.1 was
obtained from their stability analysis.

The purpose of this paper on shallow wakes is to investigate the effect of bottom
friction on the absolute and convective stability characteristics of wake flows by means
of a linear stability analysis, and thus interpret and compare with the results of our
earlier experimental study (Chen & Jirka 1995). General velocity profiles are used and
bottom friction is considered over a wide parameter range. According to the
experimental results of Chen & Jirka (1995), the reverse velocity remains almost
constant in vortex shedding and unsteady bubble wakes within a wide range of bottom
friction parameter when S! 0.6, but decreases gradually in the steady bubble wake
with increasing S. For this reason, we consider the variation of both reverse velocity
and bottom friction. Some preliminary results of this analysis had been presented by
Chen & Jirka (1993).

2. Linear instability characteristics of shallow wake flows

In this section, the shallow wake flow behaviour is investigated by means of a linear
instability analysis of the two-dimensional depth-averaged equations of motion with
bottom friction terms. The base flow is assumed to be parallel. Both absolute and
convective instability characteristics and their dependence on the shallow wake
parameter S are explored.

Obviously, given the complicated character of the near-wake recirculating flow and
the gradual evolution in the far wake, the results of such calculations can at best
approximate reality. Nevertheless, it has been shown by earlier applications of this
technique to unbounded wake flows (for example, see Huerre & Monkewitz 1990) that
they can explain qualitatively many of the observed wake features.

2.1. The shallow-water stability equation with bottom friction

In a shallow water layer, the depth-averaged equations of motion for parallel slightly
disturbed flow with the two-dimensional (x, y) velocity field (U­u, �) (see Chu, Wu &
Khayat 1991), in which U(y) is the base velocity and u(x, y, t) and �(x, y, t) are the
disturbance velocities, and p is the disturbance pressure, are :

¥u
¥x

­
¥�
¥y

¯ 0, (1)

¥u
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¥x

­�
¥U
¥y
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h
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h
~ #u, (2)
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2h
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in which ρ is the density, c
f
the turbulent friction coefficient and ε

h
the horizontal eddy

diffusivity.
The small-amplitude velocity disturbances are harmonic in x, t :

u¯φ
u
(y) ei(αx−βt), (4)

�¯φ
v
(y) ei(αx−βt), (5)

in which φ
u

and φ
v
are complex amplitude functions. Furthermore, α¯α

r
­iα

i
, where

α
r
is the wavenumber of the disturbance, and ®α

i
is the spatial amplification rate for
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modes that propagate in the x" 0 direction, while ­α
i
is the spatial amplification rate

for modes that propagate in the x! 0 direction, and β¯β
r
­iβ

i
, where β

r
is the

frequency of the disturbance, and β
i
the temporal amplification rate.

Substituting these terms into the depth-averaged equations of motions leads to

iαφ
u
¯®φ!

v
, (6)

iα(U®C )φ
u
®U «φ

v
­iαp¯®

c
f
U

h
φ
u
­ε

h
(φ"

u
®α#φ

u
), (7)

iα(U®C )φ
v
­p«¯®

c
f
U

h
φ
v
­ε

h
(φ"

v
®α#φ

v
), (8)

where the prime denotes differentiation with respect to the transverse coordinate y.
C¯β}α¯C

r
­iC

i
, where C

r
is the phase speed. After eliminating the pressure and φ

u
,

one obtains the shallow-water stability equation with bottom friction (dropping the
subscript on φ

v
)

(U(y)®C­ξ) (φ§®α#φ)­ξ
U «
U

φ«®U §φ¯ ε
h
(φ§§®2α#φ§­α%φ), (9)

where ξ¯ c
f
U}(iαh)¯S

l
}(iα 2l ) is a parameter measuring the effect of local friction

and S
l
¯ c

f
2l}h is the local wake stability parameter in which l is the local wake half-

width. The boundary conditions are

φ(³l
!
)¯φ«(³l

!
)¯ 0, (10)

where φ is the eigenfunction which represents the amplitude of the disturbance in the
y-direction. Two sidewalls are located at y¯ l

!
and ®l

!
, where l

!
U¢. Equation (9)

is a modified form of the Orr–Sommerfeld equation with the added effect of bottom
friction.

2.2. Search procedure for absolute and con�ecti�e instabilities

As has been mentioned in the Introduction, Betchov & Criminale (1966) discovered a
branch-point singularity of the inviscid dispersion relation in the upper complex-
frequency plane for a wake profile with zero centreline velocity. This branch point
indicates the existence of absolute instability. The characteristics of the absolute and
convective instability in shear flows can be determined by investigation of its impulse
response (see Monkewitz, 1988). An impulse contains modes of all frequency and
wavenumbers. A given flow may amplify the unstable modes. If one introduces a
Green’s function G(x, t) to represent the impulse response, the Green’s function takes
on the form of a wave packet in the (x, t)-plane. For each ray x}t¯ constant, the
impulse mode with wavenumber α* is given by

dβ

dα
(α*)¯

x

t
. (11)

The quantity dβ}dα at the saddle point is constant along rays of constant x}t, and since
x}t is real. Moving along a ray with velocity dβ}dα at the saddle point, the wave given
by α* and β* grows temporally with a growth rate given by

σ
i
¯β

i
(α*)®α$

i

dβ

dα
(α*). (12)

Whenever at a certain point the condition of the group velocity dβ}dα¯ 0 is satisfied,
an absolute growth rate σ

i
that corresponds to α* is given as σ

i
¯β

i
(α*). If β

i
" 0,

there will exist unstable modes travelling upstream relative to the location of the
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F 2. Definition of wake velocity profiles.

disturbance and the flow may be referred to as absolute unstable. Conversely, for
β
i
! 0, the flow is con�ecti�ely unstable, and the unstable modes will be travelling

downstream only.
Searching in the (α,β) domain for the saddle point, where dβ}dα¯ 0, may provide

the criterion to distinguish whether the flow is absolutely or convectively unstable. For
example, dβ}dα¯ 0 with β

i
" 0 is satisfied at a pinch-type branch point, which

separates into the upper and lower halves of the complex α-plane when β
i
tends to

infinity. This was found by Betchov & Criminale (1966) for the wake flow with zero
velocity on the centreline, so this wake flow is absolutely unstable.

In the present work, an improved eigenvalue searching procedure by means of the
Chebyshev pseudospectral technique has been used to solve accurately and efficiently
the shallow-water stability equation with the bottom friction terms. This technique has
been described in Chen & Jirka (1994).

The transverse velocity profile of a self-preserving wake may be approximated by
(Monkewitz 1988)

U(y)¯U{ (1®R­2 sech#R(y}l)) (13)

as sketched in figure 2 where R¯ (U
m
®U

a
)}(U

m
­U

a
) is the velocity ratio, U{ ¯

"

#
(U

m
­U

a
) is the mean wake velocity, U

a
is the ambient velocity, U

m
is the wake centreline

velocity, and l is the transverse length scale (l is related to the half-width b¯ sinh−"(1)
l¯ 0.881 l as shown in figure 2). R¯ 0 means uniform flow, R¯®1 is a wake with
zero centreline velocity, and R!®1 means reverse flow on the centreline. In an actual
developing wake flow behind a bluff body, R gradually increases with distance
downstream from negative values towards zero at large distances.

Equation (13) is the special case of the more general wake profile definition used by
Monkewitz (1988), U(y)¯U{ (1®R­2R[1­sinh#N(y}l)]−" with N¯ 1. For N" 1, this
provides flatter profiles in the wake centre. From Monkewitz’s work for unbounded
plane wakes (his figure 2) it is apparent that, for near-wake values when R%®1, the
value of the Reynolds number (based on kinematic viscosity) dividing absolute and
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b
U¢) and without

bottom friction (S
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¯ 0). Solid lines refer to different velocity ratios R. Values of the frequency β

r
are

shown around the saddle point only. The saddle point S refers to the absolute}convective instability
transition.

convective instability changes only slightly over the range 1!N! 5 and the minimum
Reynolds number lies in this range. On the other hand, for far-wake values, R&®1,
the wake flow approaches N¯ 1. For this reason the special form of (13) was retained
for all calculations since we have the primary aim of investigating the dependence of
shallow wake characteristics on the additional parameter S

b
¯ c

f
2b}h.

An example of the validation and accuracy of the present search procedure is given
in figure 3 for the unbounded inviscid wake without any bottom friction. Assuming
β
i
¯ 0, a number of curves for constant R can be obtained and are shown on the

(α
r
,®α

i
)-plane. It is found that a saddle point exists at R¯®0.904 and with β

r
¯ 0.591.

These results are in exact agreement with the earlier computations of Mattingly &
Criminale (1972) and of Monkewitz & Nguyen (1987). This means that the wake
flow is absolutely unstable for R!®0.904 and convectively unstable for R"®0.904.

Because the varicose mode shows no signs of absolute instability for the range of
realistic wake flow profiles (see Monkewitz & Nguyen 1987), and because the wake
flow generally is more susceptible to sinuous instabilities, the following results only
deal with the sinuous mode.

2.3. Numerical results for shallow wake flows

Transition from absolutely unstable to con�ecti�ely unstable flows. In figure 4 the case of
inviscid (ε

h
¯ 0) flow with a velocity profile R¯®1 is explored. (Note that R¯®1 is

less than the critical value R¯®0.904 that divides absolute and convective instabilities
for the case of no bottom friction, as represented in figure 3.) Thus, assuming β

i
¯ 0,

which is the dividing line between an absolute and a convective unstable mode, a series
of eigenvalues can be found that represent the wake friction parameter S

b
and the

frequency β
r

as contours in the (α
r
,®α

i
)-plane. The saddle point, with S

b
¯ 0.331,

frequency β
r
¯ 0.558, wavenumber α

r
¯ 1.36 and α

i
¯®0.68, is a particular pinch-

type branch point at which there is a group velocity dβ}dα¯ 0 with β
i
¯ 0. As

discussed above, when the group velocity dβ}dα¯ 0, β
i
" 0 indicates that the flow is

absolutely unstable and β
i
! 0 that it is convectively unstable. Therefore, the group
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F 5. Joint effect of wake Reynolds number Re
b

and wake friction parameter S
b

on the
absolute}convective instability transition in the shallow wake with velocity ratio of R¯®1.0. The
asymptotic inviscid transition is S

bca
¯ 0.331.

velocity dβ}dα¯ 0 with β
i
¯ 0 at the saddle point is the dividing line of absolute and

convective instability. The value of S
b
¯ 0.331 is defined as the critical wake friction

parameter S
bca

for the velocity profile with R¯®1.
The combined effect of bottom friction, expressed by the wake parameter S

b
, and

of the horizontal diffusion coefficient, expressed by the wake Reynolds number
Re

b
¯U

a
2b}ε

h
, is shown in figure 5. The asymptote for Re

b
U¢ is given by the critical

value S
bca

¯ 0.331 shown in figure 5. The decrease in S
bca

with increasing diffusion
coefficient (decreasing Re

b
) is very gradual to about S

bca
¯ 0.3 at Re

b
¯ 1000. As will
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parameter S
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and wake friction parameter S

b
.

be shown in the next section, typical values for the turbulent wake Reynolds number
Re

b
are very large (" 10$) for wide shallow wakes so that the inviscid assumption

(Re
b
U¢) will be a very good indication of the wake instability characteristics, and will

be adopted in the following analysis.
Calculations for selected velocity profiles in the range ®0.904"R"®1.5 reveal the

dependence of the absolute}convective instability boundary condition S
bca

on R, which
is shown in figure 6. From these results, it is found that bottom friction does damp the
absolute instability in near-wake flows. At least qualitatively, this effect is similar to
that of viscosity in unbounded wakes (Monkewitz 1988) and of density in hot
unbounded jets (Yu & Monkewitz 1988).
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Transition from con�ecti�ely unstable to stable flows. Referring to figure 4, when
S
b
"S

bca
¯ 0.331, one may find a pair of curves for each S

b
-value: one curve is located

above the saddle point and the other below it. The upper curve corresponds to a
spatially damped upstream-propagating mode. The lower curve, however, moves down
with increasing S

b
, attaining a maximum value of the spatial amplification rate ®α

i

equal to zero at S
b
¯ 0.618. This marginal value indicates the damping of convective

instabilities and the edge of the fully stable domain. Hence, this value of S
b

will be
denoted the local critical wake parameter for convective instabilities, S

bcc
.

The full range of S
bcc

values, shown in figure 7, is obtained by a simple method.
With the assumption of α

i
¯ 0 and β

i
¯ 0 (i.e. following the abscissa in figure 4), the

eigenvalues of S
b
, α

r
ad β

r
are searched for and the neutral curves are illustrated on an

(S
b
, α

r
)-plane. Obviously, when S

b
is larger than the maximum value on the neutral

curve, the flow will become stable to disturbances. The maximum S
b
value is the critical

parameter S
bcc

(see figure 6). The velocity ratio R¯®1.33 is of interest : here the saddle
point has moved down to the abscissa in the (α

r
,®α

i
)-plane, indicating an overlap of

the absolute and convective instability points. At yet lower values the spatial
amplification rate reverses sign, as shown in figure 8. For R"®1.33, the saddle point
has negative α

i
and therefore the downstream-propagating mode (the lower curve) is

spatially growing while the upstream-propagating mode (the upper curve) is spatially
damped. But for R!®1.33, the saddle point has positive α

i
and therefore the

upstream-propagating mode is now spatially growing and the downstream-
propagating mode is spatially damped. The amplification rate and frequency as
functions of R are shown in figure 9.

Furthermore, the frequency of vortex oscillation may be obtained. Koch (1985) and
Monkewitz & Nguyen (1987) have shown that for the absolute}convective instability
transition in spatially developing flows, a resonance condition may govern the flow.
Thus, given a multitude of modes corresponding to different R-values in the near wake,
the mode with the maximum amplification rate will be the controlling one. The
amplification rate ®α

i
is shown in figure 9(a) as function of R following the S

ca

transition line for R!®0.904 and then following S¯ 0 for R"®0.904. The
maximum amplification indeed occurs at the critical point R¯®0.904. The frequency
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.

of oscillations in the vortex shedding wake is controlled by the value at that critical
point St

b
¯ (β

r
}2π) (2b}U

a
)E 0.165 (or St

d
¯ 0.20 based on cylinder diameter), as

shown in figure 9(b).

3. Comparison of experimental results with the instability analysis

The above stability analysis will be compared with the experimental data (mainly the
classification of flow patterns) of Chen & Jirka (1995) in this section. The experiments
of Morkovin (1964) and stability analysis of Monkewitz (1988) for the unbounded low-
Reynolds-number wake are considered as a similar phenomenon.

First, it must be demonstrated that the shallow wake flows are controlled in the main
by the turbulent bottom friction (expressed by the wake friction parameter S, or S

b
)

rather than by lateral turbulent diffusive momentum exchange (expressed by the wake
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Reynolds number Re
d
, or Re

b
). As was shown in figure 5, the flow becomes quite

invariant once the local wake Reynolds number Re
b
¯U

a
2b}ε

h
exceeds 1000. A robust

estimate for the transverse eddy viscosity in a wide open channel flow is ε
h
¯ 0.2 uH

(Fischer et al. 1979) where uk¯ (c
f
}2)"/#U

a
is the shear velocity. Hence, Re

b
E (7}c"/#

f
)

(2b}H ). For the present experiments, with c
f
% 0.01 and (2b)}HED}HE 10 to 100,

this givers Re
b
of the order of 1000 to 10000. (Yet larger values would hold for actual

environmental conditions.) Thus, the turbulent shallow wake can indeed be assumed
‘ inviscid’ (Re

d
or Re

b
" 1) in the sense that small-scale turbulence damping (with scales

of the order of H ) is negligible. The wake friction parameter S (or S
b
) is the single

controlling factor.
The present computations of instability are for local instability with the assumption

of parallel base flow. In practice, the wake flow will diverge downstream and for the
so-called global instability, which allows non-parallel effects, it was found by Chomaz
et al. (1988) that local absolute instability is a necessary but not sufficient condition for
a global mode to become self-excited, i.e. to grow in time. They showed that the region
of local absolute instability has to reach a finite critical size before self-excitation (e.g.
the Ka! rma! n vortex street) is achieved. This means that the onset of the Ka! rma! n vortex
street occurs as a global transition at a higher Reynolds number than the Reynolds
number for the first appearance of local absolute instability. This result has been
confirmed by Monkewitz (1988) in his study of low-Reynolds-number unbounded
wake flow. He found that Re

C
¯ 5 defines the transition of the flow from stability to

convective instability, and the absolute instability in the near wake will appear when
Re

d
"Re

A
¯ 25. The strength of the absolute instability grows and finally, when

Re
d
"Re

IK
¯ 47, the incipient Ka! rma! n vortex street is generated as the end product of

absolute instability. Here, the subscript IK means the onset of the incipient Ka! rma! n
vortex street, A means absolute instability and C means convective instability.
Alternatively as Re

d
decreases, viscosity will first suppress the vortex shedding when

Re
d
!Re

IK
, and then, when Re

d
!Re

A
, it will totally damp the absolute instability.

For Re
d
!Re

C
, the flow becomes stable.

In the present study, an increase in the bottom friction parameter S will result in a
more stable flow (just like decreasing the Reynolds number). The return velocity in the
wake flow is the link between the theory (with an assumed velocity profile) and the
experiments. As has been discussed, the present study concerns local absolute
instability. We now consider the most appropriate velocity profile for representing the
global wake characteristics.

Two attempts will be made to do this. First, from the measured maximum return
velocity, the R-value in (13) can be determined and critical S-values can be obtained
theoretically through figure 6. The maximum return velocity is constant with
U
m
}U

a
¯®0.35 (or R¯®2.07) in the unsteady bubble (as shown in figures 1b and 1c)

regime if S! 0.5 while there is a rapid decrease of return velocity (R up to ®1.1)
with increasing S-values within the steady bubble (as shown in figure 1d ) regime when
S" 0.5. In order to compare quantitatively the experimental and theoretical results, it
is necessary to reconcile the differences in the length-scale definitions of the two wake
parameters, S and S

b
. From the hot-film measurement of Chen & Jirka (1995), it is

found that 2b is about 0.82D. The measured S is thus converted to S
b
and results are

plotted in figure 10(a). One obtains two intersections: 0.65 on the S
bca

curve and 0.7
on the S

bcc
curve. The two corresponding critical S-values based on the cylinder

diameter are denoted S
C

¯ 0.85, characterizing the transition between stability and
convective instability, and S

A
¯ 0.79, the transition between convective and absolute

instability. Experimentally, Chen & Jirka (1995) found S
V

¯ 0.2 as the transition
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F 10. Stability diagram for shallow wakes in comparison with experimental data. (a) Squares
indicate S

bca
¯ 0.65 and S

bcc
¯ 0.7 obtained at intersections of lines of critical values on the stability

diagram and the R®S relation from experimental return velocities. (b) Squares show how measured
critical values between different flow patterns correspond to a velocity profile around R¯®0.945.
The triangle is an intersection point of the vertical line of R¯®0.945 and the S

bcc
curve.

between vortex shedding and unsteady bubble wake, and S
U

E 0.6 as the transition
between an unsteady and steady bubble wake (see table 1). (In fact, an S

U
value of 0.5

was quoted by Chen & Jirka. Another inspection shows, however, that a value of 0.6
better approximates the bulk of their data. In any case, inaccuracies in the estimation
of the turbulent friction coefficient and inaccuracies in the water depth should be kept
in mind here.) The value of S

C
dividing wakes with a steady bubble (recirculation zone)

and fully unseparated flows at the bottom of table 1 needs to be determined in future,
yet larger-scale, laboratory experiments.

In table 1 a comparison has been made between the shallow wake characteristics and
the low-Reynolds-number unbounded wake characteristics (Morkovin 1964;
Monkewitz 1988). It can be seen that a strong similarity exists between these two kinds
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Shallow wake Unbounded wake

Observed flow patterns
(Chen & Jirka 1995)

Stability analysis
(present work)

Observed flow patterns
(Morkovin 1964)

Stability analysis
(Monkewitz 1988)

Vortex shedding Absolutely unstable Vortex shedding Absolutely unstable
S

V
¯ 0.2 — Re

K
¯ 90 —

Unsteady bubble — Incipient Ka! rma! n vortex —
S

U
E 0.6 — Re

IK
¯ 47 —

— S
A
¯ 0.79 — Re

A
¯ 25

Steady bubble Convectively unstable Fixed vortex pair Convectively unstable
S

C
¯? S

C
¯ 0.85 Re

C
¯ 5 Re

C
¯ 5

Unseparated wake Convectively stable Unseparated wake Convectively stable

T 1. Comparison of stability characteristics for shallow wakes and low-Reynolds-number
unbounded wakes

of wake instability although there are differences in the physical processes. For
increasing S and decreasing Re

d
, the suppression of vortex shedding (S

V
¯ 0.2 or Re

K

¯ 90) and the unstable bubble wake (S
U

E 0.6 or Re
IK

¯ 47) happen before the
damping of the absolute instability (S

A
¯ 0.79 or Re

A
¯ 25) and convective instability

(S
C

¯ 0.85 or Re
C
¯ 5). Because the vortex shedding is the saturated end product of the

absolute instability, there must be a certain level of amplification rate of disturbance
to create and maintain vortex shedding. The present result for high-Reynolds-number
shallow wakes (S

C
"S

A
"S

U
"S

V
) is thus equivalent to the sequence for low-

Reynolds-number unbounded flow (Re
K

"Re
IK

" Re
A

"Re
C
), reported in Chomaz

et al. (1988) and Monkewitz (1988). Based on the Squire transformation, two-
dimensional disturbance modes as considered herein are more unstable than three-
dimensional modes. Naturally, there are some three-dimensional disturbances no
matter how strongly two-dimensional the flow may appear to be. This would also
partially explain the sequence of (S

C
"S

A
"S

U
"S

V
).

As the second interpretation of the experimental behaviour, an alternative matching
criterion may be based on plotting the measured critical bottom friction stability
parameter S

b
on figure 6 to obtain the corresponding R-value. The measured values of

S
V

¯ 0.2 and S
U

E 0.6 based on cylinder diameter can be converted to be 0.164 and
0.492 based on 2b and are plotted as square symbols in figure 10(b). From S

V
¯ 0.2,

a corresponding value of R of ®0.945 was obtained, which is between the zero return
velocity profile of R¯®1 and the maximum R of the absolutely unstable domain.
With R¯®0.945 an intersection point of S¯ 0.7 (triangle in figure 10b) is obtained,
which is close to the experimental value of S

U
E 0.6. Following the arguments of Koch

(1985) and Monkewitz & Nguyen (1987) for the absolute}convective instability
transition in spatially developing flows, a resonance condition may govern the flow.
Thus, given a multitude of modes corresponding to different R-values in the near wake,
the mode with the maximum amplification rate will be the controlling one. As shown
in figure 9, the maximum amplification rate indeed occurs at the critical point
R¯®0.904. Also, as remarked earlier, the frequency of oscillations in the vortex
shedding wake is controlled by the critical value of St

b
¯ 0.165 or St

d
¯ 0.20. This

agrees closely with the observed experimental frequency of the vortex shedding wake,
St

b
¯ 0.21 (Chen & Jirka 1995).
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4. Discussion and conclusions

Linear instability analysis of shallow turbulent wake flows has been carried out by
using the shallow-water stability (modified Orr–Sommerfeld) equation derived from
the depth-averaged shallow-water equations with a term describing bottom friction.
Branch-point singularities (indicating absolute instability) have been computed for
different wake velocity profiles and absolute and convective instabilities can be
suppressed by the bottom friction when the bottom friction stability parameter S is
large enough. The amplification rate and frequency were also determined.

The transition values (S
V

¯ 0.2 and S
U

& 0.6) between different wake flow patterns
which have been observed in previous experiments (Chen & Jirka 1995) can be
interpreted in the light of the instability analysis. here, S

A
corresponds to the instability

boundary between absolute and convective instabilities and S
C

corresponds to
the transition between convectively unstable and stable wake flow. The sequence
(S

C
"S

A
"S

U
"S

V
) corresponds to (Re

K
"Re

IK
"Re

A
"Re

C
) in unbounded low-

Reynolds-number flow. Also, the measured values of S
V

and S
U

were found to
correspond to the velocity profile of R¯®0.945 which appears to be the dominant
mode. Another observed property of the wake flow, the Strouhal number of the
oscillations, also agrees well with theory.

The present results may also be compared with the stability computations of
Grubisic et al. (1995) for the shallow wake behind mountains in a stratified
atmosphere. Their stability equation is similar to the present one. The application of
a piecewise-linear (triangular) velocity profile misses the two inflection points,
however. Their result gives a critical ‘ surface drag number’ r (numerically about one
half of S as defined herein) of about 0.10. Their results, just like the present ones,
explain the vortex shedding wakes as observed in the majority of atmospheric cases,
but are not in agreement with the stable bubble wake for the mountain island of Hawaii
(Smith & Grubisic 1993). The presence of internal hydraulic jumps with additional
energy dissipation and internal wave radiation may account for these discrepancies.
Clearly, additional work including the range of other dissipative mechanisms will be
needed to explain the full behaviour of these diverse types of shallow flows in the
natural environment.
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Science Foundation (Grant No. MSM-8806130) and the Electric Power Research
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